ROUTE 1 CORRIDOR
(ATTLEBORO, NORTH ATTLEBOROUGH) TRANSPORTATION STUDY

Southeastern Regional Planning Economic Development District
Route 1 Corridor Study

Scope of Study:
Route 1 between Route 120 and Irving Avenue
N Attleborough (2.5 Miles); Attleboro (1.5 Miles)
15 signalized intersections
3 major stop-controlled intersections
Route 123

Background:
State owned and maintained
Minor arterial
Weekday 28,000-37,000 vehicles/day
Saturday 29,560-42,500 vehicles/day
Study Process

Public Outreach
- N Attleborough open house (April 24th 2018)
- Attleboro open house (April 25th 2018)
- Online survey (148 Respondents)

Stakeholders Coordination
- N Attleborough
- Attleboro
- GATRA
- Mass DOT District 5

System Evaluations
- Travel demand forecast
- Capacity analysis
- Safety analysis
- Multi-modal accommodations
- Environmental
98% respondents answered travel on Route 1 by cars
69% respondents answered don’t bike or walk
29% respondents answered don’t feel safe to walk or bike
55% respondents answered shopping main reason for trip
32% respondents answered commuting main reason for trip
50% respondents answered make multiple stops
36% answered make 1 stop
12% answered drive through Route 1 (no stops)
89% respondents answered take a detour to avoid Route 1

47% respondents answered take a detour during the weekend
33% during weekday commute
21% during the holiday
Respondents picked most congested and dangerous intersections:

41% May St at Route 1
37% Hoppin Hill Rd at Route 1
37% Allen Ave at Route 1
27% Highland Ave at Route 1
25% Route 1A at Route 1
18% Newport Ave at Route 1A
17% Emerald Square Mall entrance (N)
14% Walmart Entrance at Route 1
13% Cumberland Ave at Route 1
9% Emerald Square Mall entrance (S)
88% respondents answered they would not consider taking bus on Route 1
59% respondents suggested additional lane could improve Route 1
27% suggested wider sidewalks
19% suggested bus shelter
24 Hour Volume

Route 1 in Attleboro

Weekday

Weekend
Capacity Analysis

1. Travel Demand Model
2. Synchro and SimTraffic(LOS)
3. Calibration and Validation

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Average Control Delay (seconds/vehicle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Smiley] A</td>
<td>≤10</td>
</tr>
<tr>
<td>![Smiley] B</td>
<td>>10 – 20</td>
</tr>
<tr>
<td>![Smiley] C</td>
<td>>20 – 35</td>
</tr>
<tr>
<td>![Sad] D</td>
<td>>35 – 55</td>
</tr>
<tr>
<td>![Sad] E</td>
<td>>55 – 80</td>
</tr>
<tr>
<td>![Sad] F</td>
<td>>80</td>
</tr>
</tbody>
</table>
Existing Condition:
7 out 18 intersections operate LOS E/F

Intersections with LOS E/F at North Attleborough(4):
Hoppin Hill Rd at Route 1
Draper Ave at Route 1
Allen Ave at Route 1
Walmart Entrance at Route 1

Intersection with LOS E/F at Attleboro(3):
May St at Route 1
May St at Route 123
Highland Ave at Route 1
Future Conditions (2025)
11 out 18 intersections are projected to operate LOS E/F

Intersections with LOS E/F at North Attleborough (5):
Hoppin Hill Rd at Route 1
Draper Ave at Route 1
Emerald Square Mall (S)
Allen Ave at Route 1
Walmart Entrance at Route 1

Intersection with LOS E/F at Attleboro (6):
May St at Route 1
May St at Route 123
R1 at Route 1A
Highland Ave at Route 1
R1A at Route 123
Newport Ave at West Street (Route 123)
Future Condition (2040):
12 out 18 intersections are projected to operate LOS E/F

Intersections with LOS E/F at North Attleborough(6):
Hoppin Hill Rd at R1
Draper Ave at R1
Emerald Square Mall (S) at R1
Allen Ave at Route 1
Walmart Entrance at Route 1
Cumberland Ave at Route 1

Intersection with LOS E/F at Attleboro(6):
May St at Route 1
May St at Route 123
R1 at Route 1A
Highland Ave at Route 1
R1A at Route 123
Newport Ave at West Street (Route 123)
May Street at Route 1 Intersection

29 Collisions
Crash Rate: 0.71

Existing conditions
- Signalized intersection
- LOS F, delay over 120 seconds
- Very high crash rate

Projected Conditions without improvements
- 2025: LOS F
- 2040: LOS F

Proposed Improvements:
- Improve bicycle and pedestrian infrastructure
- Add additional northbound and southbound through lane

Projected Conditions with Improvements:
- 2025: LOS D
- 2040: LOS D
Route 1A at Route 1 Intersection

Existing conditions
- Signalized intersection
- LOS D, delay 52 seconds
- Medium high crash rate

Projected Conditions without improvements
- 2025: LOS F
- 2040: LOS F

Proposed Improvements:
- Add additional southbound left turn lanes

Projected Conditions with Improvements:
- 2025: LOS D
- 2040: LOS D
Highland Ave at Route 1 Intersection

Existing conditions
- Signalized intersection
- LOS E, delay 59 seconds
- Extremely high crash rate

Projected Conditions without improvements
- 2025: LOS F
- 2040: LOS F

Proposed Improvements:
- Add eastbound left turn lane and right turn lane
- Add westbound left turn lane
- Add southbound right turn lane

Projected Conditions with Improvements:
- 2025: LOS D
- 2040: LOS D
Highland/Newport Ave at Route 1A Intersection

Existing conditions
- Signalized intersection
- LOS D, delay 44 seconds
- Medium high crash rate

Projected Conditions without improvements
- 2025: LOS F
- 2040: LOS F

Proposed Improvements:
- Construct westbound left turn lane
- Construct northbound right turn lane

Projected Conditions with Improvements:
- 2025: LOS D
- 2040: LOS D
Route 1
Cumberland Ave to Como Drive

Improvements for consideration:
- Construct continuous raised median
- Construct protected left/right turn lanes where warranted
- Consolidate driveways

45 Collisions
GATRA Bus Route

Existing:

- Route 10, 11 and 12 operate along Route 1
- August ridership ranges 3800-4800
- Flag stop system; bus service not apparent

Recommendations:

- Building upon the existing bus network and continue promoting public transit
- Considering bus transit, bicycle, pedestrian (all modes of transportation as priority for infrastructure planning, design and construction
- Consideration of bus shelter and/or bus turnout, connecting businesses, sidewalks and destinations (typical spacing of bus stop of 600 feet)
Cross-section Design Alternatives

Existing (62 feet)

Pros: Low cost; least changes to the roadway geometry and capacity.

Cons: No accommodation for bicycle and bus transit modes.

Multi-used Path (70 feet)

Pros: Increase sidewalk capacity and safety; no changes to the roadside geometry.

Cons: Medium cost, modifications on the curbside; no visibility of bus service.

Bus Shelter (88 feet)

Pros: Great visibility of bus service, increase bicycle/pedestrian capacity.

Cons: Costly; ROW issues on curb side and road side; adverse impacts on the existing road queue and delay.

Bus Shelter with bus pull out (110 feet)

Pros: Great visibility of bus service, less impact of road capacity increase bicycle/pedestrian capacity.

Cons: Very costly; Require significant changes on road side and curb side.
Proposed Recommendations and Alternatives

Intersections
- Signals system improvements
 Optimization, coordination, and adaptive traffic signal control technology
- Geometric capacity
 Construct additional left, right or through lanes where warranted
 Improve crosswalks, pedestrian push button and signal phasing in compliance with ADA design standards

Corridor Layout
- 11 feet driving lane
- 10 feet multi-used path
- Access management plan
Access Management Considerations

1. Connect Allen Ave from Route 1 to Old Post Road

2. Connect Cumberland Ave from Route 1 to Newport Ave

3. Extend Walmart Entrance Driveway from Route 1 to Newport Ave

4. Construct new road between Walmart Entrance Driveway and Cumberland Ave
What’s Next...

• Draft Report
• Presentations
• Final Report

Guoqiang Li, **PTP**
Senior Transportation Planner

88 Broadway
Taunton, MA 02780
(508) 824-1367 x234

gli@srpedd.org
www.srpedd.org
www.facebook.com/SRPEDD